Part Number Hot Search : 
CVF2100 KDV275 BA7792 ATTIN B1948 TRLPB CMOZ5V6 JCT1025C
Product Description
Full Text Search
 

To Download MIC23153 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MIC23153
4MHz PWM 2A Buck Regulator with HyperLight LoadTM and Power Good
General Description
The MIC23153 is a high efficiency 4MHz 2A synchronous buck regulator with HyperLight LoadTM mode, Power Good output indicator, and programmable soft-start. HyperLight LoadTM provides very high efficiency at light loads and ultra-fast transient response which makes the MIC23153 perfectly suited for supplying processor core voltages. An additional benefit of this proprietary architecture is very low output ripple voltage throughout the entire load range with the use of small output capacitors. The tiny 2.5mm x 2.5mm Thin MLF(R) package saves precious board space and requires only four external components. The MIC23153 is designed for use with a very small inductor, down to 0.47H, and an output capacitor as small as 2.2 F that enables a total solution size, less than 1mm in height. The MIC23153 has a very low quiescent current of 22A and achieves a peak efficiency of 93% in continuous conduction mode. In discontinuous conduction mode, the MIC23153 can achieve 85% efficiency at 1mA. The MIC23153 is available in 10-pin 2.5mm x 2.5mm Thin MLF(R) package with an operating junction temperature range from -40C to +125C. Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com.
Features
* * * * * * * * * * * Input voltage: 2.7V to 5.5V Output voltage: fixed or adjustable (0.62V to 3.6V) Up to 2A output current Up to 93% peak efficiency 85% typical efficiency at 1mA Power Good output Programmable soft-start 22A typical quiescent current 4MHz PWM operation in continuous mode Ultra fast transient response Low ripple output voltage - 35mVpp ripple in HyperLight LoadTM mode - 5mV output voltage ripple in full PWM mode Fully integrated MOSFET switches 0.01A shutdown current Thermal shutdown and current limit protection 10-pin 2.5mm x 2.5mm Thin MLF(R) -40C to +125C junction temperature range
* * * * *
Applications
* Solid State Drives (SSD) * Mobile handsets * Portable media/MP3 players * Portable navigation devices (GPS) * WiFi/WiMax/WiBro modules * Wireless LAN cards * Portable applications ____________________________________________________________________________________________________________
Typical Application
Fixed Output Voltage
HyperLight Load is a trademark of Micrel, Inc. MLF and MicroLeadFrame are registered trademark Amkor Technology Inc.
Adjustable Output Voltage
Micrel Inc. * 2180 Fortune Drive * San Jose, CA 95131 * USA * tel +1 (408) 944-0800 * fax + 1 (408) 474-1000 * http://www.micrel.com
December 2009
M9999-121409-A
Micrel Inc.
MIC23153
Ordering Information
Part Number MIC23153-GYMT MIC23153YMT
Notes: 1. Other options available (1V - 3.3V). Contact Micrel Marketing for details. 2. Thin MLF is GREEN RoHS compliant package. Lead finish is NiPdAu. Mold compound is Halogen Free. 3. Thin MLF = Pin 1 identifier.
(R) (R)
Marking Code WEG WEA
Nominal Output Voltage 1.8V Adjustable
Junction Temp. Range -40C to +125C -40C to +125C
Package 10-Pin 2.5mm x 2.5mm Thin MLF(R) 10-Pin 2.5mm x 2.5mm Thin MLF(R)
Pin Configuration
2.5mm x 2.5mm Thin MLF(R) (MT) Fixed Output Voltage (Top View)
2.5mm x 2.5mm Thin MLF(R) (MT) Adjustable Output Voltage (Top View)
Pin Description
Pin Number (Fixed) 1 2 3 4 5 Pin Number (Adjustable) 1 2 3 4 5 SW EN SNS NC FB PG Switch (Output): Internal power MOSFET output switches. Enable (Input): Logic high enables operation of the regulator. Logic low will shut down the device. Do not leave floating. Sense: Connect to VOUT as close to output capacitor as possible to sense output voltage. Not Internally Connected. Feedback: Connect a resistor divider from the output to ground to set the output voltage. Power Good: Open drain output for the power good indicator. Use a pullup resistor from this pin to a voltage source to detect a power good condition. Soft Start: Place a capacitor from this pin to ground to program the soft start time. Do not leave floating, 100pF minimum CSS is required. Analog Ground: Connect to central ground point where all high current paths meet (CIN, COUT, PGND) for best operation. Input Voltage: Connect a capacitor to ground to decouple the noise. Power Ground. Pin Name Pin Function
6 7 8,9 10
6 7 8,9 10
SS AGND VIN PGND
December 2009
2
M9999-121409-A
Micrel Inc.
MIC23153
Absolute Maximum Ratings(1)
Supply Voltage (VIN) ........................................... -0.3V to 6V Sense Voltage (VSNS) .........................................-0.3V to VIN Output Switch Voltage (VSW) ..............................-0.3V to VIN Enable Input Voltage (VEN).. ..............................-0.3V to VIN Power Good Voltage (VPG).................................-0.3V to VIN Storage Temperature Range .. ...............-65C to +150C Lead temperature (soldering, 10 sec.) ....................... 260C ESD Rating(3) ................................................. ESD Sensitive
Operating Ratings(2)
Supply Voltage (VIN)... ................................2.7V to 5.5V Enable Input Voltage (VEN) .. ............................0V to VIN Sense Voltage (VSNS) ..................................... 0.62V to 3.6V Junction Temperature Range (TJ)... ....-40C TJ +125C Thermal Resistance 2.5mm x 2.5mm Thin MLF-10 (JA) ...................90C/W 2.5mm x 2.5mm Thin MLF-10 (JC) ...................63C/W
Electrical Characteristics(4)
TA = 25C; VIN = VEN = 3.6V; L = 1.0H; COUT = 4.7F unless otherwise specified. Bold values indicate -40C TJ +125C, unless noted.
Parameter Supply Voltage Range Under-Voltage Lockout Threshold Under-Voltage Lockout Hysteresis Quiescent Current Shutdown Current Output Voltage Accuracy Feedback Regulation Voltage Current Limit Output Voltage Line Regulation Output Voltage Load Regulation IOUT = 0mA , SNS > 1.2 * VOUT Nominal VEN = 0V; VIN = 5.5V VIN = 3.6V if VOUTNOM < 2.5V, ILOAD = 20mA VIN = 4.5V if VOUTNOM 2.5V, ILOAD = 20mA ILOAD = 20mA SNS = 0.9*VOUTNOM VIN = 3.6V to 5.5V if VOUTNOM < 2.5V, ILOAD = 20mA VIN = 4.5V to 5.5V if VOUTNOM 2.5V, ILOAD = 20mA 20mA < ILOAD < 500mA, VIN = 3.6V if VOUTNOM < 2.5V 20mA < ILOAD < 500mA, VIN = 5.0V if VOUTNOM 2.5V 20mA < ILOAD < 1A, VIN = 3.6V if VOUTNOM < 2.5V 20mA < ILOAD < 1A, VIN = 5.0V if VOUTNOM 2.5V ISW = 100mA PMOS ISW = -100mA NMOS IOUT = 120mA VOUT = 90%, CSS = 470pF VSS = 0V 86 Rising Turn-On 0.5 (turn-on) Condition Min 2.7 2.45 2.55 75 22 0.01 -2.5 0.6045 2.2 0.62 3.3 0.3 0.3 0.7 0.2 0.19 4 320 2.7 92 7 68 0.9 0.1 160 20 1.2 2 96 45 5 +2.5 0.635 Typ Max 5.5 2.65 Units V V mV A A % V A %/V % % MHz s A % % s V A C C
PWM Switch ON-Resistance Switching Frequency Soft Start Time Soft Start Current Power Good Threshold (Rising) Power Good Threshold Hysteresis Power Good Delay Time Enable Threshold Enable Input Current Over-temperature Shutdown Over-temperature Shutdown Hysteresis
Notes:
1. Exceeding the absolute maximum rating may damage the device. 2. The device is not guaranteed to function outside its operating rating. 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. 4. Specification for packaged product only.
December 2009
3
M9999-121409-A
Micrel Inc.
MIC23153
Typical Characteristics
Efficiency v s. Output Current VOUT = 1.8V @ 25C
100% 90% 80% EFFICIENCY (%)
EFFICIENCY (%)
Efficiency v s. Output Current VOUT = 3.3V @ 25C
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 1 1 10 100 1000 OUT PUT CURRENT (mA) 10000 100
VIN = 5.5V VIN = 4.2V VIN = 5V
1000000 100000 RISE TIM E (s) 10000 1000 100 10
VOUT Rise Tim e v s. C SS
70% 60% 50% 40% 30% 20% 10% 1 10 100 1000 OUT PUT CURRENT (mA) 10000
VIN = 3.6V VIN = 5V VIN = 3V
VIN = 3.6V
1000
10000 100000 1000000 CSS (pF)
Current Limit v s. Input Voltage
4.0 3.5 CURRENT LIM IT (A) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2.5 3.0 3.5 4.0 4.5 INPUT VOLT AGE (V) 5.0 5.5
TCASE = 25C
Shutdown Current v s. Input Voltage
30 SHUTDOWN CURRENT (nA) 25 OUTPUT VOLTAGE (V) 20 15 10 5
TCASE = 25C
Line Regulation (Low Loads)
1.900 1.875 1.850 1.825 1.800 1.775 1.750 1.725 1.700 5.5
IOUT = 1mA IOUT = 130mA IOUT = 20mA
0 2.5 3.0 3.5 4.0 4.5 5.0 INPUT VOLT AGE (V)
2.5
3.0
3.5 4.0 4.5 5.0 INPUT VOLT AGE (V)
5.5
Line Regulation (High Loads)
1.90
Output Voltage v s. Output Current (HLL)
1.900 1.875 1.900 1.875 OUTPUT VOLTAGE (V) 1.850 1.825 1.800 1.775 1.750 1.725 1.700 0 0.02 0.04 0.06 0.08 OUT PUT CURRENT (A) 0.1
Output Voltage v s. Output Current (CCM)
OUTPUT VOLTAGE (V)
IOUT = 300mA
OUTPUT VOLTAGE (V)
1.85
1.850 1.825 1.800 1.775 1.750 1.725 1.700
VIN = 3.6V
1.80
1.75
IOUT = 1A
VIN = 3.6V
1.70 2.5 3.0 3.5 4.0 4.5 5.0 INPUT VOLT AGE (V) 5.5
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 OUT PUT CURRENT (A)
Output Voltage v s. Temperature
1.85 1.84 OUTPUT VOLTAGE (V) 1.83 1.81 1.80 1.79 1.78 1.77 1.76 1.75 -40 -20 0 20 40 60 80 100 120 T EM PERAT URE (C)
ILOAD = 20mA
PG Delay Tim e v s. Input Voltage
90 80
PG THRESHOLD (% of VREF)
PG Thresholds v s. Input Voltage
91% 90%
PG Rising
70 PG DELAY (s) 60 50 40 30 20 10 0 2.5 3.0
PG Rising
89% 88% 87% 86% 85% 84% 83% 82% 81% 2.5 3.0 3.5 4.0 4.5 5.0 INPUT VOLT AGE (V) 5.5
PG Falling
1.82
PG Falling
3.5 4.0 4.5 5.0 INPUT VOLT AGE (V)
5.5
December 2009
4
M9999-121409-A
Micrel Inc.
MIC23153
Typical Characteristics (Continued)
UVLO Threshold v s. Tem perature
2.56 2.55 UVLO THRESHOLD (V) 2.54 2.53 2.52 2.51 2.50 2.49 2.48 2.47 2.46 -40 -20 0 20 40 60 80 100 120 T EM PERAT URE (C)
UVLO_OFF UVLO_ON
Enable Threshold v s. Input Voltage
1.2 1.1 VEN THRESHOLD (V) VEN THRESHOLD (V) 1.0 0.9 0.8 0.7 0.6
TCASE = 25C
Enable Threshold v s. Temperature
1.2 1.1 1.0 0.9 0.8 0.7 0.6
VIN = 3.3V
0.5 2.5 3.0 3.5 4.0 4.5 INPUT VOLT AGE (V) 5.0 5.5
0.5 -40 -20 0 20 40 60 80 100 120 T EM PERAT URE (C)
Switching Frequency v s. Load Current
10000
L = 2.2H
Feedback Voltage v s. Tem perature
0.65 0.64 0.63 0.62 0.61 0.60 0.59 -40 -20 0 20 40 60 80 100 120 T EM PERAT URE (C)
VIN = 2.6V VIN = 3.6V
FEEDBACK VOLTAGE (V)
SW FREQUENCY (kHz)
1000 100 10 1
VOUT = 1.8V
VIN = 5.5V
L = 1H
0.1 0.0001
0.001
0.01
0.1
1
10
LOAD CURRENT (A)
December 2009
5
M9999-121409-A
Micrel Inc.
MIC23153
Functional Characteristics
December 2009
6
M9999-121409-A
Micrel Inc.
MIC23153
Functional Characteristics (Continued)
December 2009
7
M9999-121409-A
Micrel Inc.
MIC23153
Functional Characteristics (Continued)
December 2009
8
M9999-121409-A
Micrel Inc.
MIC23153
Functional Diagram
Figure 1. Simplified MIC23153 Functional Block Diagram - Fixed Output Voltage
Figure 2. Simplified MIC23153 Functional Block Diagram - Adjustable Output Voltage
December 2009
9
M9999-121409-A
Micrel Inc.
MIC23153 current in PWM mode. The current loop for the power ground should be as small as possible and separate from the analog ground (AGND) loop as applicable. Refer to the layout recommendations for more details. PG The power good (PG) pin is an open drain output which indicates logic high when the output voltage is typically above 92% of its steady state voltage. A pull-up resistor of more than 5kOhms should be connected from PG to VOUT. SS The soft start (SS) pin is used to control the output voltage ramp up time. The approximate equation for the ramp time in milliseconds is 270x103 x ln(10) x CSS. For example, for a CSS = 470pF, Trise ~ 300s. See the Typical Characteristics curve for a graphical guide. The minimum recommended value for CSS is 100pF. FB The feedback (FB) pin is provided for the adjustable voltage option (no internal connection for fixed options). This is the control input for programming the output voltage. A resistor divider network is connected to this pin from the output and is compared to the internal 0.62V reference within the regulation loop. The output voltage can be programmed between 0.65V and 3.6V using the following equation:
R1 VOUT = VREF 1 + R2
Functional Description
VIN The input supply (VIN) provides power to the internal MOSFETs for the switch mode regulator along with the internal control circuitry. The VIN operating range is 2.7V to 5.5V so an input capacitor, with a minimum voltage rating of 6.3V, is recommended. Due to the high switching speed, a minimum 2.2F bypass capacitor placed close to VIN and the power ground (PGND) pin is required. Refer to the layout recommendations for details. EN A logic high signal on the enable pin activates the output voltage of the device. A logic low signal on the enable pin deactivates the output and reduces supply current to 0.01A. MIC23153 features external soft-start circuitry via the soft start (SS) pin that reduces in-rush current and prevents the output voltage from overshooting at start up. Do not leave the EN pin floating. SW The switch (SW) connects directly to one end of the inductor and provides the current path during switching cycles. The other end of the inductor is connected to the load, SNS pin and output capacitor. Due to the high speed switching on this pin, the switch node should be routed away from sensitive nodes whenever possible. SNS The sense (SNS) pin is connected to the output of the device to provide feedback to the control circuitry. The SNS connection should be placed close to the output capacitor. Refer to the layout recommendations for more details. AGND The analog ground (AGND) is the ground path for the biasing and control circuitry. The current loop for the signal ground should be separate from the power ground (PGND) loop. Refer to the layout recommendations for more details. PGND The power ground pin is the ground path for the high
Where: R1 is the top resistor, R2 is the bottom resistor. Example feedback resistor values:
VOUT 1.2V 1.5V 1.8V 2.5V 3.3V R1 274k 316k 301k 324k 309k R2 294k 221k 158k 107k 71.5k
December 2009
10
M9999-121409-A
Micrel Inc.
MIC23153 in inductance. Ensure the inductor selected can handle the maximum operating current. When saturation current is specified, make sure that there is enough margin so that the peak current does not cause the inductor to saturate. Peak current can be calculated as follows:
1 - VOUT /VIN IPEAK = IOUT + VOUT 2 x f x L As shown by the calculation above, the peak inductor current is inversely proportional to the switching frequency and the inductance; the lower the switching frequency or the inductance the higher the peak current. As input voltage increases, the peak current also increases. The size of the inductor depends on the requirements of the application. Refer to the Typical Application Circuit and Bill of Materials for details. DC resistance (DCR) is also important. While DCR is inversely proportional to size, DCR can represent a significant efficiency loss. Refer to the Efficiency Considerations. The transition between high loads (CCM) to Hyperlight load (HLL) mode is determined by the inductor ripple current and the load current.
Application Information
The MIC23153 is a high performance DC-to-DC step down regulator offering a small solution size. Supporting an output current up to 2A inside a tiny 2.5mm x 2.5mm Thin MLF(R) package, the IC requires only three external components while meeting today's miniature portable electronic device needs. Using the HyperLight LoadTM switching scheme, the MIC23153 is able to maintain high efficiency throughout the entire load range while providing ultra-fast load transient response. The following sections provide additional device application information. Input Capacitor A 2.2F ceramic capacitor or greater should be placed close to the VIN pin and PGND pin for bypassing. A Murata GRM188R60J475ME84D, size 0603, 4.7F ceramic capacitor is recommended based upon performance, size and cost. A X5R or X7R temperature rating is recommended for the input capacitor. Y5V temperature rating capacitors, aside from losing most of their capacitance over temperature, can also become resistive at high frequencies. This reduces their ability to filter out high frequency noise. Output Capacitor The MIC23153 is designed for use with a 2.2F or greater ceramic output capacitor. Increasing the output capacitance will lower output ripple and improve load transient response but could also increase solution size or cost. A low equivalent series resistance (ESR) ceramic output capacitor such as the Murata GRM188R60J475ME84D, size 0603, 4.7F ceramic capacitor is recommended based upon performance, size and cost. Both the X7R or X5R temperature rating capacitors are recommended. The Y5V and Z5U temperature rating capacitors are not recommended due to their wide variation in capacitance over temperature and increased resistance at high frequencies. Inductor Selection When selecting an inductor, it is important to consider the following factors (not necessarily in the order of importance): * * * * Inductance Rated current value Size requirements DC resistance (DCR)
The MIC23153 is designed for use with a 0.47H to 2.2H inductor. For faster transient response, a 0.47H inductor will yield the best result. For lower output ripple, a 2.2H inductor is recommended. Maximum current ratings of the inductor are generally given in two methods; permissible DC current and saturation current. Permissible DC current can be rated either for a 40C temperature rise or a 10% to 20% loss December 2009 11
The diagram shows the signals for high side switch drive (HSD) for Ton control, the Inductor current and the low side switch drive (LSD) for Toff control. In HLL mode, the inductor is charged with a fixed Ton pulse on the high side switch (HSD). After this, the LSD is switched on and current falls at a rate VOUT/L. The controller remains in HLL mode while the inductor falling current is detected to cross approximately -50mA. When the LSD (or Toff) time reaches its minimum and the inductor falling current is no longer able to reach this 50mA threshold, the part is in CCM mode and switching at a virtually constant frequency. Once in CCM mode, the Toff time will not vary. Therefore, it is important to note that if L is large enough, the HLL transition level will not be triggered. That inductor is: V 135ns LMAX = OUT 2 50mA
M9999-121409-A
Micrel Inc. Compensation The MIC23153 is designed to be stable with a 0.47H to 2.2H inductor with a 4.7F ceramic (X5R) output capacitor. Duty Cycle The typical maximum duty cycle of the MIC23153 is 80%. Efficiency Considerations Efficiency is defined as the amount of useful output power, divided by the amount of power supplied.
V xI Efficiency % = OUT OUT V xI IN IN x 100
MIC23153 output currents. Over 100mA, efficiency loss is dominated by MOSFET RDSON and inductor losses. Higher input supply voltages will increase the Gate-to-Source threshold on the internal MOSFETs, thereby reducing the internal RDSON. This improves efficiency by reducing DC losses in the device. All but the inductor losses are inherent to the device. In which case, inductor selection becomes increasingly critical in efficiency calculations. As the inductors are reduced in size, the DC resistance (DCR) can become quite significant. The DCR losses can be calculated as follows: PDCR = IOUT2 x DCR From that, the loss in efficiency due to inductor resistance can be calculated as follows:
VOUT x IOUT Efficiency Loss = 1 - V OUT x IOUT + PDCR x 100
Maintaining high efficiency serves two purposes. It reduces power dissipation in the power supply, reducing the need for heat sinks and thermal design considerations and it reduces consumption of current for battery-powered applications. Reduced current draw from a battery increases the devices operating time and is critical in hand held devices. There are two types of losses in switching converters; DC losses and switching losses. DC losses are simply the power dissipation of I2R. Power is dissipated in the high side switch during the on cycle. Power loss is equal to the high side MOSFET RDSON multiplied by the Switch Current squared. During the off cycle, the low side Nchannel MOSFET conducts, also dissipating power. Device operating current also reduces efficiency. The product of the quiescent (operating) current and the supply voltage represents another DC loss. The current required driving the gates on and off at a constant 4MHz frequency and the switching transitions make up the switching losses.
Efficiency v s. Output Current VOUT = 1.8V @ 25C
1.00 0.90 0.80 EFFICIENCY (%) 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00001 0.001 0.1 OUT PUT CURRENT (A) 10
VIN = 5V VIN = 3.6V VIN = 3V
Efficiency loss due to DCR is minimal at light loads and gains significance as the load is increased. Inductor selection becomes a trade-off between efficiency and size in this case. HyperLight LoadTM Mode MIC23153 uses a minimum on and off time proprietary control loop (patented by Micrel). When the output voltage falls below the regulation threshold, the error comparator begins a switching cycle that turns the PMOS on and keeps it on for the duration of the minimum-on-time. This increases the output voltage. If the output voltage is over the regulation threshold, then the error comparator turns the PMOS off for a minimumoff-time until the output drops below the threshold. The NMOS acts as an ideal rectifier that conducts when the PMOS is off. Using a NMOS switch instead of a diode allows for lower voltage drop across the switching device when it is on. The asynchronous switching combination between the PMOS and the NMOS allows the control loop to work in discontinuous mode for light load operations. In discontinuous mode, the MIC23153 works in pulse frequency modulation (PFM) to regulate the output. As the output current increases, the off-time decreases, thus provides more energy to the output. This switching scheme improves the efficiency of MIC23153 during light load currents by only switching when it is needed. As the load current increases, the MIC23153 goes into continuous conduction mode (CCM) and switches at a frequency centered at 4MHz. The equation to calculate the load when the MIC23153 goes into continuous conduction mode may be approximated by the following formula:
(V - VOUT ) x D ILOAD > IN 2L x f As shown in the previous equation, the load at which the MIC23153 transitions from HyperLight LoadTM mode to
Figure 2. Efficiency Under Load
The figure above shows an efficiency curve. From no load to 100mA, efficiency losses are dominated by quiescent current losses, gate drive and transition losses. By using the HyperLight LoadTM mode, the MIC23153 is able to maintain high efficiency at low December 2009 12
M9999-121409-A
Micrel Inc. PWM mode is a function of the input voltage (VIN), output voltage (VOUT), duty cycle (D), inductance (L) and frequency (f). As shown in Figure 3, as the Output Current increases, the switching frequency also increases until the MIC23153 goes from HyperLight LoadTM mode to PWM mode at approximately 120mA. The MIC23153 will switch at a relatively constant frequency around 4MHz once the output current is over 120mA.
MIC23153
Switching Frequency v s. Load Current
10000
L = 2.2H
SW FREQUENCY (kHz)
1000 100
L = 1H
10 1
VOUT = 1.8V
0.1 0.0001
0.001
0.01
0.1
1
10
LOAD CURRENT (A)
Figure 3. SW Frequency vs. Output Current
December 2009
13
M9999-121409-A
Micrel Inc.
MIC23153
Typical Application Circuit (Fixed Output)
Bill of Materials
Item C1 C2 C3 L1 R3 R4 U1
Notes: 1. TDK: www.tdk.com 2. Murata: www.murata.com 3. Vishay: www.vishay.com 4. Micrel, Inc.: www.micrel.com
Part Number C1608X5R0J475K GRM188R60J475KE19D C1608X5R0J475K GRM188R60J475KE84D C1608NPO0J471K VLS3012ST-1R0N1R9 LQH44PN1R0NJ0 CRCW06031002FKEA CRCW06031002FKEA MIC23153-xYMT
Manufacturer TDK
(1)
Description
Qty. 1
Murata(2) TDK Murata TDK TDK Murata Vishay(3) Vishay Micrel, Inc.(4)
Ceramic Capacitor, 4.7F, 6.3V, X5R, Size 0603 1 Ceramic Capacitor, 470pF, 6.3V, NPO, Size 0603 1H, 2A, 60m, L3.0mm x W3.0mm x H1.0mm 1H, 2.8A, 50m, L4.0mm x W4.0mm x H1.2mm Resistor,10k, Size 0603 Resistor,10k, Size 0603 4MHz 2A Buck Regulator with HyperLight LoadTM Mode 1 1 1 1 1
December 2009
14
M9999-121409-A
Micrel Inc.
MIC23153
Typical Application Circuit (Adjustable Output)
Bill of Materials
Item C1 C2 C3 C4 L1 R1 R2 R3 R4 U1
Notes: 1. TDK: www.tdk.com 2. Murata : www.murata.com 3. Vishay: www.vishay.com 4. Micrel, Inc.: www.micrel.com
Part Number C1608X5R0J475K GRM188R60J475KE19D C1608X5R0J475K GRM188R60J475KE84D C1608NPO0J471K VLS3010ST-1R0N1R9 LQH44PN1R0NJ0 CRCW06033013FKEA CRCW06031583FKEA CRCW06031002FKEA CRCW06031002FKEA MIC23153-AYMT
Manufacturer TDK
(1)
Description
Qty. 1
Murata(2) TDK Murata TDK TDK Murata
(2)
Ceramic Capacitor, 4.7F, 6.3V, X5R, Size 0603 1 Ceramic Capacitor, 470pF, 6.3V, NPO, Size 0603 Not Fitted (NF) 1H, 2A, 60m, L3.0mm x W3.0mm x H1.0mm 1H, 2.8A, 50m, L4.0mm x W4.0mm x H1.2mm Resistor,301k, Size 0603 Resistor,158k, Size 0603 Resistor,10k, Size 0603 Resistor,10k, Size 0603 4MHz 2A Buck Regulator with HyperLight LoadTM Mode 1 0 1 1 1 1 1 1
Vishay(3) Vishay Vishay Vishay Micrel, Inc.(4)
December 2009
15
M9999-121409-A
Micrel Inc.
MIC23153
PCB Layout Recommendations
Top Layer
Bottom Layer
December 2009
16
M9999-121409-A
Micrel Inc.
MIC23153
Package Information
10-Pin 2.5mm x 2.5mm Thin MLF
(R)
December 2009
17
M9999-121409-A
Micrel Inc.
MIC23153
Recommended Land Pattern
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. (c) 2009 Micrel, Incorporated.
December 2009
18
M9999-121409-A


▲Up To Search▲   

 
Price & Availability of MIC23153

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X